Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.135
1.
Exp Biol Med (Maywood) ; 249: 10141, 2024.
Article En | MEDLINE | ID: mdl-38711461

Liver fibrosis has become a serious public health problem that can develop into liver cirrhosis and hepatocellular carcinoma and even lead to death. Cannabidiol (CBD), which is an abundant nonpsychoactive component in the cannabis plant, exerts cytoprotective effects in many diseases and under pathological conditions. In our previous studies, CBD significantly attenuated liver injury induced by chronic and binge alcohol in a mouse model and oxidative bursts in human neutrophils. However, the effects of CBD on liver fibrosis and the underlying mechanisms still need to be further explored. A mouse liver fibrosis model was induced by carbon tetrachloride (CCl4) for 10 weeks and used to explore the protective properties of CBD and related molecular mechanisms. After the injection protocol, serum samples and livers were used for molecular biology, biochemical and pathological analyses. The results showed that CBD could effectively improve liver function and reduce liver damage and liver fibrosis progression in mice; the expression levels of transaminase and fibrotic markers were reduced, and histopathological characteristics were improved. Moreover, CBD inhibited the levels of inflammatory cytokines and reduced the protein expression levels of p-NF-κB, NF-κB, p-IκBα, p-p38 MAPK, and COX-2 but increased the expression level of PPAR-α. We found that CBD-mediated protection involves inhibiting NF-κB and activating PPAR-α. In conclusion, these results suggest that the hepatoprotective effects of CBD may be due to suppressing the inflammatory response in CCl4-induced mice and that the NF-κB and PPAR-α signaling pathways might be involved in this process.


Cannabidiol , Carbon Tetrachloride , Liver Cirrhosis , NF-kappa B , PPAR alpha , Animals , Cannabidiol/pharmacology , Cannabidiol/therapeutic use , NF-kappa B/metabolism , PPAR alpha/metabolism , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Liver Cirrhosis/chemically induced , Liver Cirrhosis/metabolism , Mice , Carbon Tetrachloride/toxicity , Male , Signal Transduction/drug effects , Disease Models, Animal , Mice, Inbred C57BL , Liver/pathology , Liver/drug effects , Liver/metabolism
2.
Environ Toxicol ; 39(6): 3760-3771, 2024 Jun.
Article En | MEDLINE | ID: mdl-38558500

Liver fibrosis is an invertible pathophysiologic process featured by excessive accumulation of extracellular matrix (ECM) which injures liver cells and activates hepatic stellate cells (HSCs). Besides, inducing ferroptosis in activated HSCs can alleviate liver fibrosis. LncRNAs modulate ferroptosis in activated HSCs and ECM deposition in liver fibrosis. However, the role of lncRNA FRMD6-AS1 in liver fibrosis is not discovered. In this study, lncRNA FRMD6-AS1 was dramatically up-regulated in activated HSCs. Knockdown of FRMD6-AS1 markedly increased iron ion, ROS and MDA levels, decreased GSH level, SLC7A11 and GPX4 protein expressions in activated HSCs. In addition, HSCs activation markers α-SMA and COL1α1 expressions were up-regulated in activated HSCs; knockdown of FRMD6-AS1 markedly down-regulated α-SMA and COL1α1 expressions in HSCs. Besides, lncRNA FRMD6-AS1 could interact with miR-491-5p, and negatively modulate miR-491-5p expression. USP13 was a target of miR-491-5p, and could be negatively modulated by miR-491-5p. Moreover, FRMD6-AS1 knockdown increased iron ion and ROS levels, decreased SLC7A11 and GPX4 protein expressions, facilitated HSCs viability, and up-regulated α-SMA and COL1α1 expressions via miR-491-5p/USP13 pathway. Finally, FRMD6-AS1 knockdown restored liver tissue structure and abrogated fibrosis in livers in a CCL4 liver fibrosis mouse model. Hence, lncRNA FRMD6-AS1/miR-491-5p/USP13 pathway repressed ferroptosis, promoted ECM deposition and facilitated liver fibrosis in vitro and in vivo models.


Ferroptosis , Hepatic Stellate Cells , Liver Cirrhosis , MicroRNAs , RNA, Long Noncoding , Ferroptosis/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/pathology , Mice , Mice, Inbred C57BL , Male , Carbon Tetrachloride/toxicity , Humans , Cell Line , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Amino Acid Transport System y+/genetics , Amino Acid Transport System y+/metabolism
3.
Ultrastruct Pathol ; 48(3): 153-171, 2024 May 03.
Article En | MEDLINE | ID: mdl-38654519

BACKGROUNDS: Chronic kidney disease (CKD) is a global public health problem. All progressive chronic kidney disease (CKD) is characterized by tubulointerstitial fibrosis. Exposure to high concentrations of carbon tetrachloride (including vapor) can destroy the kidneys. Autophagy played an important role in maintaining the homeostasis of organs. Impaired autophagy was frequently associated with renal damage and fibrosis. Recent data suggests that metformin protects against a variety of kidney disorders. AIM: To investigate the protective role of metformin on carbon tetrachloride induced renal damage via autophagy pathway. MATERIALS AND METHODS: Forty adult male albino rats were divided into four equal groups (10 rats, each); Group 1: control group. Group 2: olive oil group received olive oil 1.5 mg/kg twice weekly S.C for 12 weeks. Group 3: The ccl4 group, the rats were received ccl4 1.5 mg/kg twice weekly S.C for 12 weeks. Group 4: CCL4 and Metformin group received concomitant treatment of CCL4, 1.5 mg/kg twice weekly S.C and 100 mg/kg/day Metformin orally for 12 weeks. After sacrifice, kidneys were taken from all animal groups and processed for light and electron microscopy, immunological studies and biochemical tests. Statistical analysis was done. RESULTS: Administration of ccl4 resulted in histopathological changes in the kidney tissue in the form of areas of tissue destruction, inflammatory cell infiltration, congestion and fibrosis. Ultrastructurally, irregular thickening of GBM was observed. Improvement was noticed with concomitant treatment of ccl4 with metformin. CONCLUSION: Metformin administration can modulate histological and biochemical effects in the renal tissue induced by of ccl4.


Autophagy , Carbon Tetrachloride , Fibrosis , Kidney , Metformin , Animals , Metformin/pharmacology , Male , Autophagy/drug effects , Rats , Carbon Tetrachloride/toxicity , Kidney/pathology , Kidney/drug effects , Kidney/ultrastructure , Renal Insufficiency, Chronic/pathology , Renal Insufficiency, Chronic/drug therapy
4.
Cell Biochem Funct ; 42(3): e4015, 2024 Apr.
Article En | MEDLINE | ID: mdl-38613208

Toxicity caused by carbon tetrachloride (CCl4) can lead to serious liver injury. The aim of the study is to investigate the protective effects of oregano oil (Origanum minutiflorum extract oil) against CCl4-induced liver injury. Two doses of oregano oil were used in the experiment: a low dose (LD; 20 mg/kg) and a high dose (HD; 60 mg/kg) during 2 weeks. CCl4 caused severe liver damage, nucleolus destruction in hepatocytes and cytogenetic changes in the nucleus. Indirectly, CCl4 causes decreased protein synthesis and significantly high creatinine and urea values. Hematological disorders have been recorded, such as decreased RBC and hemoglobin concentration, increased WBC and deformability of the erythrocyte membrane. Both doses of oregano oil had protective effects. Improved protein synthesis and high globulins level, creatinine and urea were found in both groups. Cytogenetic changes in the nucleus of hepatocytes were reduced. A high dose of oregano oil had maximal protective effects for RBC, but a very weak effect on hemoglobin synthesis. Also, WBC and lymphocyte values were low. Origanum stimulates protein synthesis and recovery of hepatocytes after liver injury, reduces the deformability of the erythrocyte membrane. High doses of oregano oil decreased WBC and lymphocytes which may lead to a weakening of the immune response. However, high doses are more effective against severe platelet aggregation than low doses, suggesting an effective treatment against thrombocytosis.


Chemical and Drug Induced Liver Injury , Origanum , Animals , Rats , Carbon Tetrachloride/toxicity , Creatinine , Urea , Chemical and Drug Induced Liver Injury/drug therapy , Hemoglobins
5.
Free Radic Biol Med ; 218: 166-177, 2024 Jun.
Article En | MEDLINE | ID: mdl-38582229

BACKGROUND: Dysregulated ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP) family occurs in metabolic reprogramming pathological processes. Nonetheless, the epigenetic mechanisms by which ENPP family impacts NAFLD, also known as metabolic dysfunction-associated steatotic liver disease (MASLD), is poorly appreciated. METHODS: We investigated the causes and consequences of ENPP1 promoter hypomethylation may boost NAFLD using NAFLD clinical samples, as well as revealed the underlying mechanisms using high-fat diet (HFD) + carbon tetrachloride (CCl4) induced mouse model of NAFLD and FFA treatment of cultured hepatocyte. RESULTS: Herein, we report that the expression level of ENPP1 are increased in patients with NAFLD liver tissue and in mouse model of NAFLD. Hypomethylation of ENPP1, is associated with the perpetuation of hepatocyte autophagy and liver fibrosis in the NAFLD. ENPP1 hypomethylation is mediated by the DNA demethylase TET3 in NAFLD liver fibrosis and hepatocyte autophagy. Additionally, knockdown of TET3 methylated ENPP1 promoter, reduced the ENPP1 expression, ameliorated the experimental NAFLD. Mechanistically, TET3 epigenetically promoted ENPP1 expression via hypomethylation of the promoter. Knocking down TET3 can inhibit the hepatocyte autophagy but an overexpression of ENPP1 showing rescue effect. CONCLUSIONS: We describe a novel epigenetic mechanism wherein TET3 promoted ENPP1 expression through promoter hypomethylation is a critical mediator of NAFLD. Our findings provide new insight into the development of preventative measures for NAFLD.


Autophagy , DNA Methylation , Dioxygenases , Disease Models, Animal , Epigenesis, Genetic , Hepatocytes , Non-alcoholic Fatty Liver Disease , Phosphoric Diester Hydrolases , Promoter Regions, Genetic , Pyrophosphatases , Animals , Humans , Male , Mice , Autophagy/genetics , Carbon Tetrachloride/toxicity , Diet, High-Fat/adverse effects , Dioxygenases/genetics , Dioxygenases/metabolism , Hepatocytes/metabolism , Hepatocytes/pathology , Liver Cirrhosis/genetics , Liver Cirrhosis/pathology , Liver Cirrhosis/metabolism , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/metabolism , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Promoter Regions, Genetic/genetics , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , Pyrophosphatases/genetics , Pyrophosphatases/metabolism
6.
J Ethnopharmacol ; 330: 118253, 2024 Aug 10.
Article En | MEDLINE | ID: mdl-38679400

ETHNOPHARMACOLOGICAL RELEVANCE: Dendrobium nobile Lindl. (DNL) is a well-known traditional Chinese medicine that has been recorded in the Chinese Pharmacopoeia (2020 edition). The previous data showed that Dendrobium nobile Lindl. alkaloids (DNLA) protect against CCl4-induced liver damage via oxidative stress reduction and mitochondrial function improvement, yet the exact regulatory signaling pathways remain undefined. AIM OF THE STUDY: The aim of the present study was to investigate the role of necroptosis in the mode of CCl4-induced liver injury and determine whether DNLA protects against CCl4-induced acute liver injury (ALI) by inhibiting mitochondrial ROS (mtROS)-mediated necroptosis. MATERIALS AND METHODS: DNLA was extracted from DNL, and the content was determined using liquid chromatograph mass spectrometer (LC-MS). In vivo experiments were conducted in C57BL/6J mice. Animals were administrated with DNLA (20 mg/kg/day, ig) for 7 days, and then challenged with CCl4 (20 µL/kg, ip). CCl4-induced liver injury in mice was evaluated through the assessment of biochemical indicators in mouse serum and histopathological examination of hepatic tissue using hematoxylin and eosin (H&E) staining. The protein and gene expressions were determined with western blotting and quantitative real-time PCR (RT-qPCR). Reactive oxygen species (ROS) production was detected using the fluorescent probe DCFH-DA, and mitochondrial membrane potential was evaluated using a fluorescent probe JC-1. The mtROS level was assessed using a fluorescence probe MitoSOX. RESULTS: DNLA lessened CCl4-induced liver injury, evident by reduced AST and ALT levels and improved liver pathology. DNLA suppressed necroptosis by decreasing RIPK1, RIPK3, and MLKL phosphorylation, concurrently enhancing mitochondrial function. It also broke the positive feedback loop between mtROS and RIPK1/RIPK3/MLKL activation. Similar findings were observed with resveratrol and mitochondrial SOD2 overexpression, both mitigating mtROS and necroptosis. Further mechanistic studies found that DNLA inhibited the oxidation of RIPK1 and reduced its phosphorylation level, whereby lowering the phosphorylation of RIPK3 and MLKL, blocking necroptosis, and alleviating liver injury. CONCLUSIONS: This study demonstrates that DNLA inhibits the necroptosis signaling pathway by reducing mtROS mediated oxidation of RIPK1, thereby reducing the phosphorylation of RIPK1, RIPK3, and MLKL, and protecting against liver injury.


Alkaloids , Carbon Tetrachloride , Chemical and Drug Induced Liver Injury , Dendrobium , Mice, Inbred C57BL , Necroptosis , Reactive Oxygen Species , Animals , Dendrobium/chemistry , Reactive Oxygen Species/metabolism , Necroptosis/drug effects , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/metabolism , Alkaloids/pharmacology , Alkaloids/isolation & purification , Male , Mice , Carbon Tetrachloride/toxicity , Mitochondria/drug effects , Mitochondria/metabolism , Liver/drug effects , Liver/pathology , Liver/metabolism , Oxidative Stress/drug effects , Membrane Potential, Mitochondrial/drug effects , Mitochondria, Liver/drug effects , Mitochondria, Liver/metabolism
7.
Mol Immunol ; 170: 60-75, 2024 Jun.
Article En | MEDLINE | ID: mdl-38626622

Liver diseases caused by viral infections, alcoholism, drugs, or chemical poisons are a significant health problem: Liver diseases are a leading contributor to mortality, with approximately 2 million deaths per year worldwide. Liver fibrosis, as a common liver disease characterized by excessive collagen deposition, is associated with high morbidity and mortality, and there is no effective treatment. Numerous studies have shown that the accumulation of mast cells (MCs) in the liver is closely associated with liver injury caused by a variety of factors. This study investigated the relationship between MCs and carbon tetrachloride (CCl4)-induced liver fibrosis in rats and the effects of the MC stabilizers sodium cromoglycate (SGC) and ketotifen (KET) on CCl4-induced liver fibrosis. The results showed that MCs were recruited or activated during CCl4-induced liver fibrosis. Coadministration of SCG or KET alleviated the liver fibrosis by decreasing SCF/c-kit expression, inhibiting the TGF-ß1/Smad2/3 pathway, depressing the HIF-1a/VEGF pathway, activating Nrf2/HO-1 pathway, and increasing the hepatic levels of GSH, GSH-Px, and GR, thereby reducing hepatic oxidative stress. Collectively, recruitment or activation of MCs is linked to liver fibrosis and the stabilization of MCs may provide a new approach to the prevention of liver fibrosis.


Carbon Tetrachloride , Cromolyn Sodium , Liver Cirrhosis , Liver , Mast Cells , Animals , Mast Cells/metabolism , Mast Cells/immunology , Mast Cells/drug effects , Carbon Tetrachloride/toxicity , Rats , Male , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Liver Cirrhosis/immunology , Liver Cirrhosis/chemically induced , Cromolyn Sodium/pharmacology , Liver/pathology , Liver/metabolism , Liver/drug effects , Transforming Growth Factor beta1/metabolism , Rats, Sprague-Dawley , Ketotifen/pharmacology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/immunology , Oxidative Stress/drug effects , NF-E2-Related Factor 2/metabolism , Signal Transduction/drug effects , Smad2 Protein/metabolism , Smad3 Protein/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Vascular Endothelial Growth Factor A/metabolism
8.
Am J Med Sci ; 367(6): 382-396, 2024 Jun.
Article En | MEDLINE | ID: mdl-38431191

BACKGROUND: Calcitriol has the potential to counteract fibrotic diseases beyond its classical action of maintaining calcium and bone metabolism; however, its functional mechanism remains unknown. Autophagy-related gene 16-like 1 (Atg16l1) is one of the genes related to autophagy and is involved in protecting against fibrotic diseases. The present study aimed to explore the contribution of autophagy to the inhibition of calcitriol-induced hepatic fibrosis, as well as its potential molecular mechanism. METHODS: Carbon tetrachloride (Ccl4)-treated mice were established as hepatic fibrosis models and received calcitriol treatment for 6 weeks. Quantification of Sirius red staining and measurement of key fibrotic markers (collagen-1 and α-SMA) was performed to detect hepatic fibrosis. Chloroquine (CQ) treatment was used to observe autophagic flux, and 3-methyladenine (3-MA) was used to inhibit autophagy. Furthermore, the effects of calcitriol on transforming growth factor ß1 (TGFß1)-stimulated primary hepatic stellate cells (HSCs) were detected. Downregulation of Atg16l1 or vitamin D receptor (VDR) in LX-2 cells was used to explore the mechanism of action of calcitriol in fibrosis and autophagy. Additionally, the electrophoretic mobility shift assay (EMSA) was used to investigate the interactions between VDR and ATG16L1. RESULTS: Calcitriol increased the expression of VDR and ATG16L1, enhanced autophagy and attenuated hepatic fibrosis. 3-MA treatment and VDR silencing abolished the protective effects of calcitriol against fibrosis. Calcitriol-induced anti-fibrosis effects were blocked by ATG16L1 suppression. Furthermore, VDR bound to the ATG16L1 promoter and downregulation of VDR decreased the expression of ATG16L1 in LX-2 cells. CONCLUSION: Calcitriol mitigates hepatic fibrosis partly through ATG16L1-mediated autophagy.


Autophagy-Related Proteins , Autophagy , Calcitriol , Hepatic Stellate Cells , Liver Cirrhosis , Receptors, Calcitriol , Autophagy/drug effects , Animals , Calcitriol/pharmacology , Calcitriol/therapeutic use , Mice , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Receptors, Calcitriol/metabolism , Receptors, Calcitriol/genetics , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Male , Humans , Carbon Tetrachloride/toxicity , Mice, Inbred C57BL , Disease Progression , Transforming Growth Factor beta1/metabolism
9.
Biomed Pharmacother ; 173: 116340, 2024 Apr.
Article En | MEDLINE | ID: mdl-38428308

The current study investigated the ameliorating impact of GA water extract (GAE) on CCl4-induced nephrotoxicity in renal cells and tissue by comparing its effectiveness with the Ketosteril (Ks) drug in restoring oxidative stress and necroinflammation. The cell morphology, necrosis, and redox state were evaluated in Vero cells. The influence of GAE on CCl4-induced oxidative stress, inflammation, and necrosis was examined in rats. The predicted inhibitory mechanism of GAE phenolic constituents against COX-2 and iNOS was also studied. The results revealed that GAE contains crucial types of phenolic acids, which are associated with its antiradical activities. GAE improved CCl4-induced Vero cell damage and restored renal architecture damage, total antioxidant capacity, ROS, TBARS, NO, GSH, GPX, SOD, and MPO in rats. GAE downregulated the gene expression of renal NF-κB, TNF-α, iNOS, and COX-2, as well as kidney injury molecule-1 (KIM-1) in rats. The GAE improved blood urea, creatinine, cholesterol, and reducing power. The computational analysis revealed the competitive inhibitory mechanism of selected phenolic composites of GAE on COX-2 and iNOS activities. The GAE exhibited higher potency than Ks in most of the studied parameters, as observed by the heatmap plots. Thus, GAE is a promising extract for the treatment of kidney toxicity.


NF-kappa B , Renal Insufficiency , Chlorocebus aethiops , Rats , Animals , NF-kappa B/metabolism , Carbon Tetrachloride/toxicity , Gum Arabic , Vero Cells , Cyclooxygenase 2/metabolism , Antioxidants/pharmacology , Oxidative Stress , Renal Insufficiency/metabolism , Oxidation-Reduction , Kidney/metabolism , Necrosis/metabolism
10.
J Biochem Mol Toxicol ; 38(4): e23691, 2024 Apr.
Article En | MEDLINE | ID: mdl-38500399

Sustained liver injuries predominantly promote oxidative stress and inflammation that lead to the progression of chronic liver disease (CLD), including fibrosis, cirrhosis, and hepatocellular carcinoma. Boldine, an alkaloid isolated from Peumus boldus, has been shown to have antioxidant and anti-inflammatory effects. Currently, there is no definitive treatment option available for CLD. Therefore, we investigated the hepatoprotective effect of boldine against carbon tetrachloride (CCl4 )-induced chronic liver injury in rats. CCl4 (2 mL/kg., b.w., i.p.) was administered twice weekly for 5 weeks to induce chronic liver injury in rats. Separate groups of rats were given boldine (20 mg/kg b.w., and 40 mg/kg b.w.) and silymarin (100 mg/kg b.w.) orally, daily. Serum transaminases, lipid peroxidation, and antioxidant levels were measured, and nuclear factor-κB (NF-κB), tumor necrosis factor-α (TNF-α), cyclooxygenase-2 (cox-2), interleukin-1 ß (IL-1ß), and α-smooth muscle actin (α-SMA) gene and protein expressions were evaluated. CCl4 administration increased liver marker enzymes of hepatotoxicity in serum and oxidative stress markers, inflammatory genes and α-smooth muscle actin expression in liver tissue. Boldine concurrent treatment suppressed CCl4 -induced elevation of transaminase levels in serum, restored enzymic and non-enzymic antioxidants, and downregulated NF-κB, TNF-α, Cox-2 and IL-1ß expressions, thereby suppressing hepatic inflammation. Boldine administration also repressed α-SMA expression. The results of this study demonstrate the antioxidant, anti-inflammatory, and antifibrotic properties of boldine, and it can be a potential therapeutic candidate in the treatment of CLD.


Aporphines , Chemical and Drug Induced Liver Injury , NF-kappa B , Rats , Animals , NF-kappa B/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Carbon Tetrachloride/toxicity , Actins/metabolism , Actins/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Cyclooxygenase 2/metabolism , Liver/metabolism , Signal Transduction , Oxidative Stress , Inflammation/metabolism , Anti-Inflammatory Agents/pharmacology , Chemical and Drug Induced Liver Injury/metabolism
11.
Eur Rev Med Pharmacol Sci ; 28(4): 1259-1271, 2024 Feb.
Article En | MEDLINE | ID: mdl-38436159

OBJECTIVE: This study aimed to assess the hepatoprotective role of oleuropein (Olp), a phenolic compound found in olive, against carbon tetrachloride (CCl4)-induced liver damage in rats. MATERIALS AND METHODS: The research involved male albino rats, which received intraperitoneal injections of 100 mg/kg b.w. of oleuropein for 8 consecutive weeks before being subjected to carbon tetrachloride (CCl4) at a dosage of 1.0 ml/kg b.w. Changes induced by CCl4 in antioxidant and inflammatory marker levels were assessed using ELISA assay kits. Moreover, CCl4-induced liver tissue architecture alteration, fibrosis, and expression pattern of protein were evaluated by performing H&E, Sirius red, Masson trichrome, and immunohistochemistry staining. RESULTS: Increased serum transaminases and massive hepatic damage were observed by this liver toxicant. The hepatic injury was further evidenced by a significant decrease in antioxidant enzyme activity [superoxide dismutase (SOD), glutathione peroxidase (GPx), Glutathione (GSH) and Total Antioxidant Capacity (T-AOC)]. The administration of CCl4 resulted in an increased inflammatory response, which was measured by C-reactive protein, interleukin-6, as well as tumor necrosis factor-alpha. Olp as a curative regimen led to significant attenuation in the inflammatory response and oxidative/nitrosative stress. This polyphenol treatment improved the hepatic tissue architecture and decreased fibrosis. In the CCl4 treatment group, the expression pattern of IL-6 protein was high, whereas expression was decreased after Olp, as evidenced by immunohistochemistry staining. CONCLUSIONS: The study suggests that oleuropein treatment has the potential to reduce liver damage caused by CCl4 induction by inhibiting oxidative stress and inflammation and maintaining liver tissue architecture. This could make it a promising treatment option for liver pathogenesis.


Chemical and Drug Induced Liver Injury, Chronic , Iridoid Glucosides , Olea , Male , Animals , Rats , Antioxidants/pharmacology , Carbon Tetrachloride/toxicity , Inflammation/drug therapy , Oxidative Stress , Phenols/pharmacology , Glutathione , Fibrosis
12.
Drug Res (Stuttg) ; 74(4): 156-163, 2024 Apr.
Article En | MEDLINE | ID: mdl-38458224

Diosgenin is a sapogenin with antidiabetic, antioxidant, and anti-inflammatory properties. The current study investigated whether diosgenin could ameliorate carbon tetrachloride (CCL4)-induced liver injury. To cause liver injury, CCL4 was injected intraperitoneally twice a week for 8 weeks. Daily oral administration of diosgenin at doses of 20, 40, and 80 mg/kg was started one day before CCL4 injection and continued for 8 weeks. Finally, serum levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), and also albumin were assessed. Catalase and superoxide dismutase (SOD) activities in addition to glutathione (GSH) and malondialdehyde (MDA) levels were also quantified in the liver homogenate and routine histological evaluation was also conducted. Elevated serum levels of liver enzymes and decreased serum level of albumin caused by CCL4 were significantly restored following diosgenin administration at doses of 40 and 80 mg/kg. Long-term administration of CCL4 increased inflammatory and apoptotic factors such as IL-1ß, caspase 3, TNF-α, and IL-6 and decreased SOD and catalase activities as well as GSH level in liver homogenates; while MDA level was increased. Treatment with diosgenin increased SOD and catalase activities and GSH levels in the liver of injured animals. In addition, liver MDA, IL-1ß, caspase 3, TNF-α, and IL-6 level or activity decreased by diosgenin treatment. Additionally, diosgenin aptly prevented aberrant liver histological changes. According to obtained results, diosgenin can dose-dependently diminish CCl4-induced liver functional deficits and histological changes in a dose-dependent manner, possibly due to its antioxidant and anti-inflammation properties, and its beneficial effect is comparable to known hepatoprotective agent silymarin.


Antioxidants , Chemical and Drug Induced Liver Injury , Mice , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Carbon Tetrachloride/toxicity , Catalase , Caspase 3 , Tumor Necrosis Factor-alpha , Interleukin-6 , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/pathology , Liver , Glutathione , Anti-Inflammatory Agents/pharmacology , Superoxide Dismutase , Albumins/pharmacology , Alanine Transaminase
13.
Toxicol Pathol ; 52(1): 55-66, 2024 Jan.
Article En | MEDLINE | ID: mdl-38528719

Iron overload has been recognized as a risk factor for liver disease; however, little is known about its pathological role in the modification of liver injury. The purpose of this study is to investigate the influence of iron overload on liver injury induced by two hepatotoxicants with different pathogenesis in rats. Rats were fed a control (Cont), 0.8% high-iron (0.8% Fe), or 1% high-iron diet (1% Fe) for 4 weeks and were then administered with saline, thioacetamide (TAA), or carbon tetrachloride (CCl4). Hepatic and systemic iron overload were seen in the 0.8% and 1% Fe groups. Twenty-four hours after administration, hepatocellular necrosis induced by TAA and hepatocellular necrosis, degeneration, and vacuolation induced by CCl4, as well as serum transaminase values, were exacerbated in the 0.8% and 1% Fe groups compared to the Cont group. On the other hand, microvesicular vacuolation induced by CCl4 was decreased in 0.8% and 1% Fe groups. Hepatocellular DNA damage was increased by iron overload in both models, whereas a synergistic effect of oxidative stress by excess iron and hepatotoxicant was only present in the CCl4 model. The data showed that dietary iron overload exacerbates TAA- and CCl4-induced acute liver injury with different mechanisms.


Carbon Tetrachloride , Chemical and Drug Induced Liver Injury , Iron Overload , Liver , Thioacetamide , Animals , Thioacetamide/toxicity , Rats , Carbon Tetrachloride/toxicity , Male , Chemical and Drug Induced Liver Injury/pathology , Liver/drug effects , Liver/pathology , Oxidative Stress/drug effects , DNA Damage/drug effects , Rats, Sprague-Dawley , Iron/toxicity
14.
Gut Microbes ; 16(1): 2323236, 2024.
Article En | MEDLINE | ID: mdl-38416424

Deoxycholic acid (DCA) serves essential functions in both physiological and pathological liver processes; nevertheless, the relationship among DCA, gut microbiota, and metabolism in chronic liver injury remain insufficiently understood. The primary objective of this study is to elucidate the potential of DCA in ameliorating chronic liver injury and evaluate its regulatory effect on gut microbiota and metabolism via a comprehensive multi-omics approach. Our study found that DCA supplementation caused significant changes in the composition of gut microbiota, which were essential for its antagonistic effect against CCl4-induced chronic liver injury. When gut microbiota was depleted with antibiotics, the observed protective efficacy of DCA against chronic liver injury became noticeably attenuated. Mechanistically, we discovered that DCA regulates the metabolism of bile acids (BAs), including 3-epi DCA, Apo-CA, and its isomers 12-KLCA and 7-KLCA, IHDCA, and DCA, by promoting the growth of A.muciniphila in gut microbiota. This might lead to the inhibition of the IL-17 and TNF inflammatory signaling pathway, thereby effectively countering CCl4-induced chronic liver injury. This study illustrates that the enrichment of A. muciniphila in the gut microbiota, mediated by DCA, enhances the production of secondary bile acids, thereby mitigating chronic liver injury induced by CCl4. The underlying mechanism may involve the inhibition of hepatic IL-17 and TNF signaling pathways. These findings propose a promising approach to alleviate chronic liver injury by modulating both the gut microbiota and bile acids metabolism.


Carbon Tetrachloride , Gastrointestinal Microbiome , Carbon Tetrachloride/toxicity , Interleukin-17 , Multiomics , Liver , Bile Acids and Salts , Deoxycholic Acid
15.
J Pak Med Assoc ; 74(1 (Supple-2)): S63-S67, 2024 Feb.
Article En | MEDLINE | ID: mdl-38385474

OBJECTIVE: To examine the therapeutic effects of Olea europaea L. leaves extract on carbon tetrachloride-induced liver injury in rats. Methods: The experimental study was conducted at the Department of Physiology, University of Karachi, Karachi, in July 2021, and comprised Albino Wistar male rats weighing 180-220gm. The animals were divided into control group I, carbon tetrachloride group II, Olea europaea L. + carbon tetrachloride group III and Olea europaea L. group IV. In Vitro model of hepatic toxicity was developed by carbon tetrachloride. A daily dose of 50mg/kg of aqueous extract of olive leaves was administered orally and 0.8ml/kg of carbon tetrachloride was administered twice a week subcutaneously for 28 days. On the 29th day, the animals were sacrificed, and tested for hepatic enzymes, lipid peroxidation markers and histopathology. Data was analysed using SPSS 20. RESULTS: Of the 24 rats, 6(25%) were in each of the 4 groups. Alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and total bilirubin levels were significantly reduced (p<0.05) in group II whereas, 4- hydroxynonenal, isoprostane and malondialdehyde levels were significantly increased (p<0.05). However, total antioxidant level increased significantly (p<0.05) in group III compared to group II. Histopathology showed severe liver damage in group II and mild damage in group III. Conclusion: Olea europaea L. leaves extract was found to have profound hepatoprotective effects.


Chemical and Drug Induced Liver Injury , Olea , Rats , Male , Animals , Carbon Tetrachloride/toxicity , Carbon Tetrachloride/metabolism , Olea/metabolism , Phytotherapy , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/metabolism , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Antioxidants/pharmacology , Antioxidants/metabolism , Liver/pathology , Rats, Wistar , Aspartate Aminotransferases , Alanine Transaminase/metabolism , Lipid Peroxidation
16.
Methods Mol Biol ; 2769: 57-65, 2024.
Article En | MEDLINE | ID: mdl-38315388

Non-alcoholic steatohepatitis (NASH) is a severe form of non-alcoholic fatty liver disease (NAFLD). Obesity is a known risk factor of NASH, which, in turn, increases the risk of developing cirrhosis (liver scarring) and hepatocellular carcinoma (HCC). In addition to being a potentially life-threatening condition, public health concerns surrounding NASH are amplified by the lack of FDA-approved treatments. Although various preclinical models reflecting both the histopathology and the pathophysiological progression of human NASH exist, most of these models are diet-based and require 6-13 months for NASH symptom manifestation. Here, we describe a simple and rapid-progression model of NASH and NASH-driven HCC in mice. Mice received a western diet equivalent (WD; i.e., a high-fat, high-fructose, and high-cholesterol diet), high-sugar water (23.1 g/L fructose and 18.9 g/L glucose), and weekly intraperitoneal injections of carbon tetrachloride (CCl4) at a dose of 0.2 µL/g of body weight. The resulting phenotype, consisting in liver fibrosis and HCC, appeared within 24 weeks of diet/treatment initiation and presented similar histological and transcriptomic features as human NASH and NASH-driven HCC, thereby supporting the adequacy of this preclinical model for the development and evaluation of drugs that can prevent or reverse these diseases.


Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology , Carcinoma, Hepatocellular/genetics , Carbon Tetrachloride/toxicity , Liver Neoplasms/pathology , Diet, Western/adverse effects , Disease Models, Animal , Liver Cirrhosis/pathology , Fructose , Diet, High-Fat/adverse effects , Liver/pathology , Mice, Inbred C57BL
17.
Life Sci ; 340: 122480, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38301876

AIM: The liver plays a crucial role in biotransformation but it is susceptible to chemical-induced damage, known as hepatotoxicity. Traditional therapies for protecting the liver face significant challenges, including poor bioavailability, off-target effects, adverse reactions, drug breakdown, and inadequate uptake. These issues emphasize the need for precise, targeted therapeutic approaches against hepatotoxicity. MATERIALS AND METHODS: The objective of our research was to develop a customized, biocompatible, and biodegradable nanodrug delivery system for hepatoprotection. We chose collagen hydrolyzed protein, or gelatin, as the base material and utilized solvent evaporation and nanoprecipitation methods to create nanoparticles with size ranging from 130 to 155 nm. The resulting nanoparticles exhibited a spherical and smooth surface, as confirmed by scanning and transmission electron microscopy. KEY FINDINGS: Bioactive aescin (AES), into these gelatin nanoparticles (AES-loaded gel NPs), we tested these nanoparticles using a hepatotoxicity model. The results were indicating a significant reduction in the levels of key biomolecules, including NF-κB, iNOS, BAX, and COX-2 and decreased serum levels of enzymes ALT and AST. This reduction correlated with a notable alleviation in the severity of hepatotoxicity. Furthermore, the treatment with AES-loaded gel NPs resulted in the downregulation of several inflammatory and liver-specific biomarkers, including nitrite, MPO, TNF-α, and IL-6. SIGNIFICANCE: In summary, our study demonstrates that the AES-loaded gel NPs were markedly more effective in mitigating experimental hepatotoxicity when compared to the free aescin. The nanoparticles exhibited a propensity for suppressing liver damage, showcasing the potential of this targeted therapeutic approach for safeguarding the liver from harmful chemical insults.


Chemical and Drug Induced Liver Injury , Nanoparticles , Rats , Animals , Rats, Wistar , Escin/metabolism , Gelatin/pharmacology , Carbon Tetrachloride/toxicity , Liver/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/metabolism , Nanoparticles/chemistry
18.
Math Biosci Eng ; 21(1): 237-252, 2024 Jan.
Article En | MEDLINE | ID: mdl-38303421

In this work, we propose a mathematical model that describes liver evolution and concentrations of alanine aminotransferase and aspartate aminotransferase in a group of rats damaged with carbon tetrachloride. Carbon tetrachloride was employed to induce cirrhosis. A second groups damaged with carbon tetrachloride was exposed simultaneously a plant extract as hepatoprotective agent. The model reproduces the data obtained in the experiment reported in [Rev. Cub. Plant. Med. 22(1), 2017], and predicts that using the plants extract helps to get a better natural recovery after the treatment. Computer simulations show that the extract reduces the damage velocity but does not avoid it entirely. The present paper is the first report in the literature in which a mathematical model reliably predicts the protective effect of a plant extract mixture in rats with cirrhosis disease. The results reported in this manuscript could be used in the future to help in fighting cirrhotic conditions in humans, though more experimental and mathematical work is required in that case.


Chemical and Drug Induced Liver Injury , Plant Extracts , Humans , Rats , Animals , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Carbon Tetrachloride/toxicity , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/pathology , Liver/pathology , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Models, Theoretical
19.
Carbohydr Res ; 536: 109042, 2024 Feb.
Article En | MEDLINE | ID: mdl-38244321

Two selenized chitooligosaccharide (O-Se-COS and N,O-Se-COS) with different sites modification were synthesized to alleviate liver injury in vivo. Comparing to traditional COS, both selenized COS exhibited enhanced reducibility as well as antioxidant capacity in vitro. Furthermore, O-Se-COS demonstrated superior efficacy in reducing intracellular reactive oxygen species (ROS) and mitochondrial damage compared to N,O-Se-COS as its enhanced cellular uptake by the positive/negative charge interactions. Two mechanisms were proposed to explained these results: one is to enhance the enzymatic activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), which effectively scavenge free radicals; the other is to down-regulate intracellular cytochrome P450 (CYP2E1) levels, inhibiting carbon tetrachloride (CCl4)-induced peroxidation damage. In vivo studies further demonstrated the effective alleviation of CCl4-induced liver injury by selenized COS, with therapeutic efficacy observed in the following order: O-Se-COS > N,O-Se-COS > COS. Finally, hemolysis and histological tests confirmed the biosafety of both selenized COS. Taken together, these finding demonstrated that selenium has the potential to improve the biological activity of COS, and precise selenylation was more conducive to achieving the synergistic effect where 1 + 1>2.


Chitosan , Liver , Oligosaccharides , Selenium , Antioxidants/pharmacology , Carbon Tetrachloride/toxicity , Carbon Tetrachloride/metabolism , Reactive Oxygen Species/metabolism , Chitin/pharmacology , Chitin/therapeutic use , Chitin/metabolism , Oxidative Stress , Selenium/pharmacology , Selenium/metabolism
20.
Toxicol Mech Methods ; 34(5): 469-483, 2024 Jun.
Article En | MEDLINE | ID: mdl-38166523

The modulatory role of primrose oil (PO) supplementation enriched with γ-linolenic acid and D/L-alpha tocopherol acetate against a carbon tetrachloride (CCl4)-induced liver damage model was assessed in this study. Twenty male Albino rats were divided into four groups. The control group received corn oil orally. The PO group received 10 mg/kg P O orally. The CCl4 group received 2 mL/kg CCl4 orally and PO/CCl4 group; received PO and 2 mL/kg CCl4 orally. The relative liver weight was recorded. Serum liver enzymes, hepatic malondialdehyde (MDA), hepatic reduced glutathione (GSH) and the expression of hepatic tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1ß), and interleukin 6 (IL-6) were assessed. The binding affinities of γ-linolenic acid and D/L-alpha tocopherol constituents with IL-1ß, IL-6 and TNF-α were investigated using molecular docking simulations. Histopathological and electron microscopic examinations of the liver were performed. The results indicated that CCl4 elevated serum liver enzyme and hepatic MDA levels, whereas GSH levels were diminished. The upregulation of IL-1ß, IL-6, and TNF-α gene expressions were induced by CCl4 treatment. The PO/CCl4-treated group showed amelioration of hepatic injury biomarkers and oxidative stress. Restoration of histopathological and ultrastructural alterations while downregulations the gene expressions of TNF-α, IL1-ß and IL-6 were observed. In conclusion, evening primrose oil enriched with γ-linolenic acid and D/L-alpha tocopherol acetate elicited a potential amelioration of CCl4-induced hepatic toxicity.


Chemical and Drug Induced Liver Injury , Liver , Oenothera biennis , Plant Oils , gamma-Linolenic Acid , Animals , Male , Chemical and Drug Induced Liver Injury/prevention & control , Chemical and Drug Induced Liver Injury/pathology , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Plant Oils/pharmacology , Plant Oils/chemistry , Liver/drug effects , Liver/metabolism , Liver/pathology , Liver/ultrastructure , gamma-Linolenic Acid/pharmacology , Oenothera biennis/chemistry , Interleukin-1beta/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor-alpha/genetics , Oxidative Stress/drug effects , Molecular Docking Simulation , Carbon Tetrachloride/toxicity , Interleukin-6/metabolism , Rats , Linoleic Acids/pharmacology , Antioxidants/pharmacology , Rats, Wistar , Signal Transduction/drug effects , Disease Models, Animal
...